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1. Problems of the theory of fracture are fundamental in the mechanics of deformable 
solids. Many limiting conditions formulated by various researchers for a number of models 
of a deformable solid, may be considered as fracture conditions. 

For plastic bodies such conditions are time-independent [I]; for materials with time de- 
pendent properties, the fracture conditions may be formulated following [2 and 31. 

The fracture of a number of materials may be described within the framework of an elas- 
tic body model. In this case the limiting conditions may be formulated differently. 

In paper [4], carried out according to an idea of A.Iu.Ishlinskii, the fracture of an elas- 
tic body is connected with the stress reaching some ultimate value. The limitin condition 

f$) = 0 was considered as the fracture condition for a brittle body in [S]. In[6 , self-sus- 9 
tainmg fracture is connected with the limiting value of the potential energy. 

The theory of crack propagation in solids, owing ita origin to Griffith, may also be con- 
sidered as a theory of the fracture of elastic bodies. As a model, Griffith [7] considered an 
elastic body with slits S (surfaces of diecontinuity of displacement). For .a virtual incre- 
ment in the surface of the slit SS the external forces p, applied to the body, do the work 
SA, equal to the change 8 W (6 W = 6 A) in potential energy of the body. Griffith assumed 
that a change in the surface of the slit SS leads to an increment in some function of the po- 
tential energy 84, and he found the equilibrium condition for the slit (crack) 

6B = 8W (1.1) 
The stable state of the slit will evidently hold for &I > 8 W and the unstable state for 

6n < 6W’. The neutral (equilibrium) state is defined by Expression (1.1). Condition (1.1) 
may be rewritten as 

F 6w -==o, 
Ml 

F=m (1.21 

Griffith interpreted the quantity 6II as a change in the surface energy of the body, and 
defined the quantity F= Z’,, - 

Later, Irwin [8] and 0 
const as the surface tension. 

rowan [9] offered another interpretation of the quantity F and con- 
nected it with the effective density of the surface energy, with the work expended in plas- 
tic deformation near the tip of the crack. 

Let us also note that a discussion of varioog possibilities of generalizing the Griffith 
theory is contained in [IO]. 

The function F for different materials may be given different interpretations (for exam- 
ple, the change 6k? may be represented as due simultaneously to a change in the surface 
energy and the work expended in plastic deformation during crack formation, etc.). But it 
should be kept in mind that the Griffith theory is one of the phenomenological theories, is a 
branch of continuum mechanics, and is not connected directly with the clarification of the 
physical mechanism of crack formation. Underlying the Griffith theory is the formulation of 
the relationships (1.1) and (1.21. In the general case the quantity 6 W/as is determined from 
the solution of a problem in elasticity theory. As regards the determination of the function 
F, it should be determined from some system of macro-experiments. 

As an analogous example, we encounter the Mohr fracture theory, which is utilized to 
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determine the strength of elastic bodies from materials with different physical mechanisms 
for the strength properties. However, when the Mohr theory is used, the condition of the 
ultimate state determined from a system of macro- tests is of interest. 

The Irwin formula [II] is quite important in the theory of cracks. Irwin considered a 
slit of length 21 (Fig. 1) in the ~7 
tion [I21 near the tip of the slit 

plane, and used asymptotic representations of the solu- 

-- aq+p.qfr-Z), 4(1 -6a’)N 
z’rrr 

E 
y-l-s -+ 0 I(1 -T)%] (1.3) 

where o,, is the normal stress, u the displacement along the y-axis 
9 

E the elastic modulus, 

‘Y 
o the Poisson coefficient. Moreover, Irwin found that if L 1 is directed along 1, 
then 

-1 I x 

---I= 

6W / 61 = CNS, C = 2n (1 - a*) / E (1.4) 
dl It then follows from (1.2) and (1.4) that 

N = (F,, j c)‘/z (1.5) 

Fig. 1 where Fo is the value of F referred to unit area. 
According to (1.3) and (1.5), we may write that in the ultimate state 

=u - O- (;g +o(f/z-1), g= 4(i - 62) (Fo / cp 
E 1/G -j- 0 [ (1 - cry”] (M) 

The radius of curvature p of the tip of an open crack at z = 1, evidently is: 

p” =.1/aN2 = ‘laF, 1 C (1.7) 

This means that a consequence of the Irwin formula is the fact that the energy condi- 
tion (1.2) may be written as either static or kinematic for the case of plane cracks [13] 

by = “Oti (N&Jo) (1.8) 

P = P” (N=No) (1.9) 

In particular, it follows from the Irwin formulas (1.4) to (1.6) that if Fo = 0, the stress 
TV at the edge of the crack is finite, and there is a smooth merger of the crack edges. 

hhristianovich [14] proposed these properties earlier as a hypothesis. It also follows 
from (1.4) that the elastic energy has a stationary value in this case (this circumstance has 
been discussed in IIS]). An extensive bibliography is devoted to questions in the mathemat- 
ical theory of cracks. Let us note paper [16], devoted to the evaluation of the energy “be- 
ing liberated” during the propagation of cracks, as we11 as [I7 to 201. Variational principles 
of fracture have been developed in [Zl], etc. 

It should be noted that various singularities of the solutions are often encountered in 
the analysis or various problems of the mechanics of a deformed solid. For example, the 
unboundedness of the stress near the tips of a rigid rectangular stamp impressed in an elae- 
tic half-space, in the neighborhood of various grooves and openings (especially re-entrant 
angles), near concentrated forces, etc. In the theory of ideal plasticity it is possible to men- 
tion the center of the fan of characteristics at which the value of the average pressure de- 
pends on the direction of the emerging characteristics. Similar examples may be mentioned 
from other branches of continuum mechanics. 

It is well known that such singularities of the solutions do not correspond to the beha- 
vior of real materials, and are a consequence of the assumptions defining the given model. 
At the same time, an analysis of these singularities is a necessary part of the mathematical 
investigation of the problem. In the Griffith theory of cracks (for F f 0) there are such sin- 
gularities near the crack edges, in whose neighborhood, generally, some stress components 
become infinite. 

However, this fact cannot have any essential significance in appraising the Griffith 
theory. The agreement between theoretical results and the data of a macro-experiment is tbe 
fundamentaI criterion of the value of a theory in continuum mechanics. 

2, Utilizing the idea of Griffith, we consider below the condition for propsgstion of finite 
cavities in elastic bodies. We assume that there is some finite cavity in an unstressed elas- 
tic body. Furthermore, we let a system of external forced p 
it is deformed. For simplicity, we consider the contour of t h 

be applied to the body, whereby 
e cavity free of loadings. 

Let as give the cavity a certain virtual change in volume 8 V (the uarface 63, the length 
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El, in particular cases). Let us note that in the linear theory of elasticity the boundary con- 

ditions are formulated on the undeformed surface for small deformations, and a virtual chan- 
ge in volume is here understood to be a change in the volume of the cavity in the undefor- 
med state. 

Such a virtual change in volume is connected with the elimination (addition) of definite 
constraints, hence, the external forces p, here perform the work 6A, equal to the elimina- 
ted (added) elastic energy 6W. 

Evidently some work of the constraints 6n impedes the liberation of the elastic energy 
?‘tV from the body. Hence, the condition of cavity propagation may be written as 

6 (a - W) = U (2.1) 

Evidently, the stable state of the cavity holds for 6li > 6 IV and the unstable state for 
6l7 < 6 W. The neutral (equilibrium) state is defined by (2.1). 

Condition (2.1) may be rewritten as 

6W 
F-m=O, 

En 
F -= 61’ 

(2.2) 

The 6 W/6 V is determined on the basis of solving the elastic problem. The function F 
is some experimentally determined function characterizing the strength (fracture) properties 
of the given solid. The function F may depend on the coordinates of points of the body zr 
on the direction characterized by the direction cosines Q , , the temperature, and other para- 
meters including those dependent on the time. The expounded viewpoint generalizes the 
conceptions developed in the theory of propagation of slits of zero thickness (cracks). 

Let us assume that the body with a cavity is in e 
‘Ev 

uilibrium under the effect of forces pr. 
R’e denote the plastic energy of the original body by t. Let us change the cavity volume 
by 8 V. Under the same forces, the body with the altered cavity will have the elastic energy 
I,. The energy A W is exerted on the fraction of removed volume. The desired change in 
elastic energy of the body will be 

6w = 6W* + AW, (2.3) 

In the case of a slit A W = 0. 

2* is the deformed contour. The contour of the vol- 

homogeneous properties, not at places with the greatsat stats 
of stress. The condition of the stable state of the cavity may 

If F is a constant, then according to (2.4). the following property of the local maximum 
of the function W may he formulated: the development of a cavity occurs when the change 
in the elastic energy of a body reaches some maximum value when its volnme variaa. 

the 
In the general case, the development of a cavity is connected, according to (2.11, with 
function II = W - I2 reaching an extremum. 

Let us examine a small change in a cavity in the plane problem. Let r = r (9) denote the 
Eq. of the original contour Lt. Let us assume that the Eq. of the contour Lz in r2 = r+ 8r. 
Then 6s = 6r dl sin X, where x is the angle between 6r, dl. Evidently 

AW = 
s 

aijeii dS = 
s 

(bi! eij sin p%)dl 

8S LI 

(2.4) 

Let 8u (a) denote the difference in displacements of the contours L + llr L2, and &o 
let o(n) denote the stress components on the areas along It. Aocszdiagtto Irwin 
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&f’* = $ $ @) &tn) dl 

1 

If 8 I+ <C A IV, conditi9n (2.1) is written as 

L\W=6ii’ 
Let us assume that 

(2.5) 

(2.6) 

LI 
K1 = const 

We then obtain from (2.4), (2.7) and (2.6) 

(2.7) 

s (aiiej; - K,) sin x6r dl = 0 (2.8) 

Ll 

The equality (2.8) evidently holds if W”= c 
” The specific potential energy may be expresse 

(crfj). In this case, therefore, the energy theory 
sidered in [4 and 51, etc. In fact, normal and tangential stress resultants are absent on the 
contour, hence f (Bij) _ up2, where Go is the normal stress on areas perpendicular to the 
contour. 

Moreover, let us assume that 

61I= K&L, K,=const (2.9) 

where 6~5 is the change in length of contour of the cavity. It is easy to obtain 

(2.10) 

where the prime denotes differentiation with respect to ‘P. From (2.4), (2.10), and (2.9), we 
obtain 

s ai eij sin x vr* -i_- r’s Sr dq - K2 

LI 

The variational Eq. 

follows from (2.11). 
Fracture occurs at those points of the contour for which the integrand in the square bra- 

ckets (2.12) equals zero. The case an = K3L6 V, e t c., may be considered analogously. 

3. Let us consider some examples. Let us assume that a curvilinear slit 1 (Fig. 3a), ter- 
minating in some cavity at the left end, is given in the zy plane. The question is asked, in 
what direction does development of the right end of the slit occur (crack propagation)? 

According to the concepts presented it is necessary to determine the auantitv 6W/61 in 

Fig. 3 

all possible directions at the right end of the slit. 
We assume that either from the direct solution of 
the problem of elasticity theory, or by utilization 
of the Irwin method, etc., the magnitude of the der- 
ivative 8 W/al = @ (zp, y,,, a, h) has successfully 
been determined for grven external forces p,(h), 
where x 

p! yo 
are the coordinates of the right end 

of the s It; a is the angle formed by the direction 
81 with the r axis directed along the tangent to the 
slit at the right end; x is a parameter of the change 
in loading. _ ._ 

The solid line in Fig. 3b pictures the graph of the quantity 6 W/b’l in h-axes. The dash- 
es show the curve of F (x, y,,, a). The curve of F is fixed for any point x0, y. . Let us note 
that if F s const, then the corresponding curve in the :a plane will be a circle with center 
at the origin. 



On conditions of quasi-brittle fracture 567 

The curve Q! is tangent to the curve F for some #!. Then directions of crack development 
correspond to rays drawn from the origin to the point of tangency of the 9, F curves. If tan- 
gency occurs at ~,everd points oim&aneonsly as is shown in Fig. 3b, then crack develop 
meat immediately occnrs in several directions, i.e ., a point of crack bifurcation holds. If 
tangency occurs at a point on the t-axis (n = 01, tbe crack is propagated in a direction tan- 
gent to its end. 

It is evident that if both ends of the crack may develop, the problem of determining @ 
should be solved independent1 
which tangency of the curves i 

for both ends, and that value of x must be determined for 
and F will ffrst be achieved at one of tha ends. Farthermore 

considering the crack development an snalogous problem for the slit I + 62, etc., should be 
solved. The problem of the development of more complex slits is similarly posed. 

As another illustration, let us mention the origin of cracks under a rigid rectangular 
stamp impressed in an elastic half*pace (Fig. 4). Let us assume that the cracks form near 

0) 
.ff bl 

~~ 

the edges of the stamp. Giving the virtual slits 6& 
.-+ \ the quantity @ ( fo, 0, Q , p. 1 should be determined 

where o is half the length of the stamp, and po is 

-a 
7 
a a ’ 

the average pressure of the stamp, Let the curve 

u n D 
/ 

@ be determined and its graph pictured in Fig. 4b. 
If the curve @ touches the curve F (fa, 0, a 1 at 

Y t 

a point of the t-axis (n = 01, the crack originates 

/’ in a direction parallel to the y-axis, etc. 
Finally, let us consider the development of a 

Fig. 4 circular cavity of radius o in aa elastic space (plane 
deformation) compressed at infinity by a uniform 

pressure JJO (Fi 
g 

. 
coordinates [ 22 

5). For simplicity, we assume the material to be incompressible. In polar 

drt Qg - --Po(f3$ 
3poaa 8 =-- 

Er 
(3.1) 

where or, og are respectively, the radial and tangential stress components, I the radial dis- 

IQ 

placement, and r the moving radius. It is easy to determine 

JJ 
,8 

6s(p&2 

a PO 

& 

W =zJc (or 
1 

-$Je,rdr = p (3.2) 
E 

a 
0 

from which follows 

6W= 
12npo2aSa 

E , g=+& &V = 2na6a (3.3) 

Fig. 5 For exam 
velopment o P 

le, if F = Ka, where K is a constant, then equilibrium de- 
the cavity will occur, according to (2.1), for 

-P 
po = I/‘j&‘Ka (3.4) 

Other cases may be examined analogously. Let us show that in this case &W*<< A W. 
From (2.4), (3.1) it follows 

(3.5) 

From (3.5), (3.3) it follows that 6 I!’ = A W. It is easy to obtain 

SW* = 
6p02 (Sa)” (3.6) 

B 
Hence, within the shope of the elucidated considerations, it turns out to be possible to 

combine the approaches to problems of the theory of crack formation and development and 
the development of finite cavities in an elastic body, 

The authors are grateful to A.A. Il’iushin, A.Iu. Ishlinskii, and G.P. Cherepanov for 
valuable discussion, and to L.M. Kachanov for a number of important remarks. 
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